top of page

バイオ燃料研究グループ

バイオ燃料研究グループは、化学と化学工学の知識を持つ4人の学生で構成され、廃棄物からバイオ燃料と有用な化学物質を作成するための基礎研究と応用プロセス工学研究の両方を
行っています。    

Screen Shot 2022-11-14 at 16_edited.jpg

 

Abraham Castro Garcia

InfoSysEnergy Doctoral Student, Energy Course, D2 student

 

Effect of hydrogen donors on the catalyzed hydrogenolysis of Kraft lignin

クラフトリグニンの触媒水素化分解に及ぼす水素供与体の影響

 

アブラハム・カストロ・ガルシア、IGP A(文部科学省奨学金)D2

リグニンは木材に広く含まれている成分(15〜30%重量)であり、その化学構造はフェノール単位でできた複雑なポリマーです。このリグニンを、現在は石油からしか得られない芳香族化学物質に変換することが可能であり、幅広い用途があります。水素化分解反応は、ニッケル触媒とともにアルコールと水を水素源として使用することにより、リグニンを芳香族化学物質に変換するために使用されます。実験は、さまざまな種類のアルコール、温度、反応時間、およびその他の変数を使用して、バッチ型または爆弾型の反応器で実行されます。生成物は主にバイオオイルで構成され、GC-MSによって分析されます。研究の目的は、リグニンから生成されるバイオオイルの量と質を最適化する変数の組み合わせを見つけることです。

Screen Shot 2022-11-18 at 15.36.26.png

直接脂質抽出を使用することによる廃水スラッジからのバイオディーゼル生産のための脂質回収効率の向上

 

Usman Muhammad、GEDES(MEXT Scholarship)D1

石油燃料の需要と使用の増加は、地下の化石燃料のレベルと環境にも有害です。廃棄物(バイオマス)の管理と利用によって化石燃料に取って代わるバイオ燃料生産への関心が高まっています。バイオディーゼルは、同じ可能性を秘めたさまざまな食用および非食用資源から生産される有望なバイオ燃料の1つです。  石油ディーゼルとして。その原料と前処理のために、それは高いという大きな挑戦を持っています 1リットルあたり4.4ドルから6.0ドルの範囲の製造コスト。下水汚泥は、  高世代で無料で入手できるため、バイオディーゼル生産の潜在的な供給源ですが それでも、乾燥プロセスが50%を超えるという、生産コストという同じ課題があります。私たちの新しいアプローチは、乾燥を排除した直接脂質抽出によってバイオディーゼルを生産することです さまざまな抽出段階を使用することによるプロセスと効率的な脂質回収。

The increasing demands and use of petroleum fuels are harmful to the underground fossil fuels level and environment as well. There is a growing interest in biofuel production to replace fossil fuels by managing and utilization of wastes (biomass). Biodiesel is one of the promising biofuels produces from different edible and non-edible resources which has the same potential as petroleum diesel. Due to its feedstock and pre-treatment, it has a great challenge of high production cost which ranges from $4.4 to $6.0 per liter. Sewage sludge has been tested as a potential source of biodiesel production because of high generation and free availability but still, it has the same challenge of production cost in which the drying process contributes >50%. Our new approach is to produce biodiesel by direct lipids extraction with the elimination of the drying process and efficient lipids recovery by using different extraction stages.

Screen Shot 2022-11-18 at 15.33.42.png

Glycerol is a by-product of the biodiesel production of renewable biomass resources and one of the main surrogates of bio-oil derived from food waste. These materials could not be used directly as fuel or chemicals because of their high acidity, low heating value, presence of high moisture and inorganic impurities content. Therefore, glycerol upgrading is one of the significant mechanisms, comprised of dehydration, deoxygenation, and hydrodeoxygenation, for production of hydrocarbon rich fuel or bio-aviation fuel (BAF) that has similar properties to conventional jet fuel but with a smaller carbon footprint and reduce life cycle greenhouse gas (GHG) emissions. Thus, in our research, a novel approach of thermo-electrochemical deoxygenation (TED) of glycerol at mild temperature and ambient pressure is under investigation. The application of increasing temperature in catholyte and electrolysis of water and glycerol producing two-fold deoxygenation within the system, using novel recombination of thermochemical and electrochemical reactions with small, applied potential between cathode and anode in dual-membrane cell, make TED as promising alternative to upgrade bio-oil into desired isopropanol.

Muhammad Harussani

IGP-A (MEXT Scholarship), Energy Course, D1 student

Glycerol upgrading via thermo-electrochemical deoxygenation (TED)

Schematic diagram TED_harussani.png

Palladium-based membranes for hydrogen separation from syngas have been studied by several research groups recently. Generally, syngas consists of H2, CO, CO2, CH4, H2S and H2O in various ratios which is a corrosive gas that is produced from gasification of coal or biomass. Impurities such as S, and Cl impurities in syngas adsorb on the Pd membrane surface and are reported to inhibit hydrogen transport across the membrane and block H2 dissociation sites. Consequently, the purity of the hydrogen gas produced is lowered by surface poisoning which also reduces the H2 purifier reliability and operating life. This study aims to investigate Pd60Cu40 hydrogen purifier membrane reliability issues when exposed to syngas including the membrane degradation/regeneration mechanisms. By understanding the membrane degradation/rejuvenation mechanism, longer operating times of the hydrogen purifier are to be expected.

Keang Kimleng

IGP-A (MEXT Scholarship), Energy Course, M2 student

Production of Green Hydrogen from Syngas using Pd-Cu membrane

Kimleng.png

Md. Rubel

IGP-A (MEXT Scholarship), Energy Course, M1

Research on biomass gasification using pyrolysis process to produce syngas for maximizing hydrogen yield

Currently biomass gasification through pyrolysis technology to address global hydrogen challenges in energy is creating a huge amount of attention. In my research, the pivotal matter to consider would be to produce syngas from palm kernels shell (PKS) biomass gasification process for maximizing hydrogen yield. In that case, preparation of an identical (Co-Mo based) and cost effective catalyst will be formulated for gasifying the significant PKS biomass feedstock and the impact of catalyst designs on pyrolysis reactors and subjected to various process parameters and targeted product yield will be revealed evidently. Followed by, the intermediate reflux (IR) ratio for optimum PKS biomass feed charge and syngas volume calculation will be estimated and integration of data processing and machine learning methods for better processing of gasification data will be applied. Assuming that after the experiment, maximum yield of the syngas will be 61.4wt% and CO will be 23.6 wt% and carbon di-oxide will be 15wt.%.

bottom of page