top of page

バイオ燃料研究グループ

バイオ燃料研究グループは、化学と化学工学の知識を持つ4人の学生で構成され、廃棄物からバイオ燃料と有用な化学物質を作成するための基礎研究と応用プロセス工学研究の両方を
行っています。    

Biofuel group infographic updated v3j 230619.jpg

 

Abraham Castro Garcia

InfoSysEnergy Doctoral Student, Energy Course, D3 student

 

Effect of hydrogen donors on the catalyzed hydrogenolysis of Kraft lignin

クラフトリグニンの触媒水素化分解に及ぼす水素供与体の影響

 

アブラハム・カストロ・ガルシア、IGP A(文部科学省奨学金)D2

リグニンは木材に広く含まれている成分(15〜30%重量)であり、その化学構造はフェノール単位でできた複雑なポリマーです。このリグニンを、現在は石油からしか得られない芳香族化学物質に変換することが可能であり、幅広い用途があります。水素化分解反応は、ニッケル触媒とともにアルコールと水を水素源として使用することにより、リグニンを芳香族化学物質に変換するために使用されます。実験は、さまざまな種類のアルコール、温度、反応時間、およびその他の変数を使用して、バッチ型または爆弾型の反応器で実行されます。生成物は主にバイオオイルで構成され、GC-MSによって分析されます。研究の目的は、リグニンから生成されるバイオオイルの量と質を最適化する変数の組み合わせを見つけることです。

Screen Shot 2022-11-18 at 15.36.26.png

直接脂質抽出を使用することによる廃水スラッジからのバイオディーゼル生産のための脂質回収効率の向上

 

Usman Muhammad、GEDES(MEXT Scholarship)D1

石油燃料の需要と使用の増加は、地下の化石燃料のレベルと環境にも有害です。廃棄物(バイオマス)の管理と利用によって化石燃料に取って代わるバイオ燃料生産への関心が高まっています。バイオディーゼルは、同じ可能性を秘めたさまざまな食用および非食用資源から生産される有望なバイオ燃料の1つです。  石油ディーゼルとして。その原料と前処理のために、それは高いという大きな挑戦を持っています 1リットルあたり4.4ドルから6.0ドルの範囲の製造コスト。下水汚泥は、  高世代で無料で入手できるため、バイオディーゼル生産の潜在的な供給源ですが それでも、乾燥プロセスが50%を超えるという、生産コストという同じ課題があります。私たちの新しいアプローチは、乾燥を排除した直接脂質抽出によってバイオディーゼルを生産することです さまざまな抽出段階を使用することによるプロセスと効率的な脂質回収。

The increasing demands and use of petroleum fuels are harmful to the underground fossil fuels level and environment as well. There is a growing interest in biofuel production to replace fossil fuels by managing and utilization of wastes (biomass). Biodiesel is one of the promising biofuels produces from different edible and non-edible resources which has the same potential as petroleum diesel. Due to its feedstock and pre-treatment, it has a great challenge of high production cost which ranges from $4.4 to $6.0 per liter. Sewage sludge has been tested as a potential source of biodiesel production because of high generation and free availability but still, it has the same challenge of production cost in which the drying process contributes >50%. Our new approach is to produce biodiesel by direct lipids extraction with the elimination of the drying process and efficient lipids recovery by using different extraction stages.

Screen Shot 2022-11-18 at 15.33.42.png

Muhammad Harussani Moklis (M. M. Harussani)

IGP-C (MEXT Scholarship), Energy Course, D2 student

Glycerol upgrading via thermo-electrocatalytic deoxygenation

Glycerol is a by-product of biodiesel manufacturing, saponification process, fatty acid and bioethanol industries. Thus, the value of glycerol is decreasing in the global market due to its surplus. Electrochemical valorization of biomass-derived feedstocks, glycerol, into biofuels offers a sustainable method for utilization of biomass waste and for greener biofuel manufacturing under milder operating conditions. Here, we investigate the novel approach of thermo-electrocatalytic deoxygenation of glycerol at ambient temperature and pressure. The application of elevated temperature within the electrolyte and selective electrolysis of glycerol over electrocatalyst, which also acts as electrode, will allow two-fold deoxygenation to occur within the single cell system. This strategy, therefore, can be a promising alternative to upgrade diverse oxygenated compounds into desired biofuels.
Harussani Glycerol ECR GA.png

Palladium-based membranes for hydrogen separation from syngas have been studied by several research groups recently. Generally, syngas consists of H2, CO, CO2, CH4, H2S and H2O in various ratios which is a corrosive gas that is produced from gasification of coal or biomass. Impurities such as S, and Cl impurities in syngas adsorb on the Pd membrane surface and are reported to inhibit hydrogen transport across the membrane and block H2 dissociation sites. Consequently, the purity of the hydrogen gas produced is lowered by surface poisoning which also reduces the H2 purifier reliability and operating life. This study aims to investigate Pd60Cu40 hydrogen purifier membrane reliability issues when exposed to syngas including the membrane degradation/regeneration mechanisms. By understanding the membrane degradation/rejuvenation mechanism, longer operating times of the hydrogen purifier are to be expected.

Keang Kimleng

IGP-A (MEXT Scholarship), Energy Course, M2 student

Production of Green Hydrogen from Syngas using Pd-Cu membrane

Kimleng.png

Md. Rubel

IGP-A (MEXT Scholarship), Energy Course, M2 student

Valorization of waste cooking oil (WCO) to sustainable aviation fuel (SAF) via catalytic hydro-processed esters and fatty acids (HEFA) process: Assessment of catalytic activity and process parameters

SAF is currently more expensive than conventional jet fuels due to higher production costs, limited production capacity, and uncertainty in feedstock availability. As a result, there are several ways to reduce the costs of SAF production in terms of reducing energy and developing new technologies, such as the use of new catalysts and so on. Additionally, when noble group catalysts are expensive and transition group catalysts (mono and di) require higher temperature, pressure, and reaction time for catalytic hydrogenation of WCO then investigate the valorization of WCO to produce 80-90% efficient and effective SAF via the catalytic hydrogenation of the HEFA process by implementation of a newly developed trimetallic Co-Mo-Ni/Al2O3 catalyst followed by optimizing the catalytic activity and reaction conditions are the main aim and objective of this research. Furthermore, this could provide a sustainable solution for disposing of WCO, reducing dependence on fossil fuel, expanding the SAF market, reducing GHGs concerns, and climate change in the aviation industry, and acquiring net zero in 2050.

Rubel Picture 1 JPEG.jpg
bottom of page