top of page


1.  エネルギー政策調査

Proposal for grid management reform for Japan.

References; Tatsuya Wakeyama, Assessment on Interregional Grid Management for Renewable Energy Integration in Japan, 15th Wind Integration Workshop, Austria, November 2016


2.  電力システムモデル分析

International collaboration: Study on integrating renewables into the Japanese power grid by 2030.

References; Rena Kuwahata, Peter Merk, Tatsuya Wakeyama, Dimitri Pescia, Steffen Rabe, Shota Ichimura, Renewables integration grid study for the 2030 Japanese power system, IET Renewable Power Generation


3.  将来のエネルギー技術とシステム

Jinesh Mohan

IGP-C (MEXT Scholarship), Energy Course, M1 student

Modeling of the solar power output forecast system for Hyderabad Railway Station (India) using Transfer Learning and Hidden Markov Model

Development of community microgrid in urban residential area: Case study of Ulaanbaatar, Mongolia

Tumurbaatar Uyanga, Energy Course M2 student, IGPC (March 2022, Graduate)

Electrical power microgrids (see fig.) have been mainly seen as a solution for rural electrification integrating more renewable energy, and offering reliable power supply, however, in recent years, it’s getting more attention in urban areas as well. Especially, in cities in developing country, various issues are entangled with energy issue, such as energy security, diversification, environmental and social problems etc. In this research, the microgrid development will be studied as an alternative solution to tackle various issues in Ulaanbaatar, Mongolia.

Having rich renewable energy resource, Mongolian energy system is heavily dependent coal which causes

deadly air pollution yet imports 20% of electricity demand from Russia. Also, both the generation and

transmission facility are exceeded their lifespan, thus requiring system upgrade in near future, to supply

reliable, sustainable, and affordable electricity and heat to its increasing population. Through this research,

the appropriate technology combination suited for local demand characteristics will be evaluated using

Homer Pro software simulation and will be compared to previous projects done by the government in terms

of economic and environmental impact. See fig. below source: Microgrid, Source: Enova Energy


Hu Dongzi

IGP-C, Energy Course, M2 student

V2G Integration on multi-energy source microgrid in Xi’an China considering the economic return benefits

In China, the transportation sector consumes a large proportion of total energy demand but also is the main source of carbon dioxide emission. Transportation consumed more than 14 million terajoule and emitted 901Mt carbon dioxide in 2019. What’s worse, vehicles accounted for 42% of the total consumption of crude oil and more than 80% of refined oil. In order to achieve zero emission target in China as soon as possible, Integrated EV to a multi-energy source microgrid can be a good solution(see figure below). From energy generation transformation aspect, Microgrid uses distributed clean energy which is a good solution of improper energy usage and solves the problem of over dependent on traditional energy sources. From the transportation aspect, EV is a kind of new clean energy vehicle which undoubtedly reduces harmful gas emissions. Combined these two part in the research and then analysis their economic and environmental return can speed up the sustainable development of society by persuading more EV cars’ owners join in the interaction between cars and grid.

Zhang Rui

IGP-C, Energy Course, D1 student (Wakeyama Lab)

Government agents’ drivers in municipal solid waste management systems: a case study in Yokohama (Japan) and Suzhou (China)

There is an increased interest in carbon-negative processes for the treatment of municipal solid wastes during past years. To achieve the carbon-neutral target, on-site renewable energy generation will be one of the key prerequisites, especially for East Asian (EA) countries. However, countries like Japan and China still cannot abandon theirs heavily reliant on the import of fossil fuels. Specifically, China experienced both rapid economic maturation and large-scale urbanization, and one obvious problem aroused by urbanization is waste disposal, followed by the increasing Municipal Solid Waste (MSW). Therefore, considering the gap between the current situation and the final goal, Waste to Energy (WtE) conversion technologies and policies are urgently needed in EA countries. In this work, we will mainly focus on techno-econometric analysis while aiming at conducting a comparative case study between two cities: Suzhou and Yokohama. For methodology, a simulation model will be used in this study to visualize the analysis and the results will give recommendations on policy decisions practically.

Screen Shot 2022-11-22 at 18.26.56.png
bottom of page